Abstracting XBRL Formula		Formula Meta Description
	[bookmark: _GoBack]

	Formula Meta Description

	
	

	
	Author
	Piotr Malczak

	
	Reviewers
	

	
	Date
	2013-10-08

	
	Version
	1

Validation rules - types
All business rules have been categorized into a few basic types. All of them are described and explained in the table below.
	Basic type
	Corresponding XBRL Formula
	Description (with examples)

	calculation

	consistency assertion
	The FMD calculation is a formula intended to calculate a value and put the result into a given fact.
The calculation is in the form:
 A = B + C + …

As far as the XBRL validator can only check the consistency of a report, the FMD calculation expressed in an XBRL formula can only be transformed into an assertion.
The XBRL validator can only check the consistency of a report; therefore, the FMD calculation can be represented in an XBRL Formula only as an assertion.

Common mathematical operators, parentheses and functions are allowed.
There can be only one argument to the left side and an expression to the right side.

	simple logical relationship
(simple value assertion)

	value assertion
	The FMD logical relationship is for examining left and right statement with a logical operator.
The logical relationship is in the form:
 A + B + C + … = X + Y + Z + …

	conditional relationship

	value assertion + precondition
	The FMD conditional relationship is for examining a logical condition but only in a case the first condition (precondition) is true.
The conditional relationship is in the form:
 if (A > 0) then (B + C + .. > = X + Y + ..)

	complex relationship
(complex value assertion)

	value assertion
	The FMD complex relationship is for any logical statement composed of all types of validations.

The complex relationship is in the form:
 isNotNull(A) or (B >= C) and (D > 0)

	existence assertion

	existence assertion
	The FMD existence assertion is for examining if a given fact occurs in an instance. For symmetry, the existence of a given fact in an instance file can be permitted.
The existence assertion is in the form:
 isNotNull(A) if the existence of fact A is required, and
 isNull(A) if the existence of fact A is prohibited.

Validation rules – addressing schemas
All these defined formula types can be used in a few variants depending on the data addressing method. All addressing variants are described below.

	Addressing variant
	
Description

	simple
	A formula operates just on single facts. Arguments point to just one data point.

	dimensional
	The dimensional variant means that a relationship described by a expression relates to dimensions.
A dimensional rule is applied to a set of concepts – a concept filter is applied to a rule.

	‘over-dimensional-mode’
	The ‘over-dimensional-mode’ variant of addressing allows the user to express the relationship applied to a concepts.

To some extent it is similar to calculation link-base applied to a dimensional model. An XBRL formula is valid for any combination of dimensions. A filter over dimensions can be used, which is an advantage of the ‘over-dimensional-mode’ addressing variant. Therefore it is much more precise than a standard XBRL calculation link-base.

	tuple
	An FMD is powerful enough to describe assertions within a single tuple.
The tuple variant will not be discussed in detail here because of the limited use of tuples in Eurofiling taxonomies.

FMD notation
FMD provides following forms of validation rules
	Basic type
	BNF

	simple logical relationship
(simple value assertion)

	<value_assertion-simple> ::= <expression><operator><expression>
<operator> ::= "=" | "<" | "<=" | ">" | ">="
<expression> ::= <argument><math_operator><argument>
	| <function_name> ”(” <expression> [”,” <expression>] * ”)”
<argument> ::= <number>
 | <data_point_address>
 | <expression>
 | "(" <expression> ")"
 | ”’”<literal>”’”
<math_operator> ::= "+" | "-" | "*" | "/"
<number> ::= decimal number with a precision of two digits
<function_name> ::= function ID
<literal> ::= string
<data_point_address> ::= depending on an addressing scheme:
		– explicite address of a single data point,
		- a range of data points with a measure filter
		- a range of data points with a dimension filter

	Calculation
	<calculation> ::= <data_point_address-single_data_point> “=” <expression>
<expression> ::= <argument><math_operator><argument>
	| <function_name> ”(” <expression> [”,” <expression>] * ”)”
<argument> ::= <number>
 | <data_point_address>
 | <expression>
 | "(" <expression> ")"
 | ”’”<literal>”’”
<math_operator> ::= "+" | "-" | "*" | "/"
<number> ::= decimal number with a precision of two digits
<function_name> ::= function ID
<literal> ::= string

	existence assertion

	<existance_assertion> ::= ”isNotNull (” <data_point_address> ”)”
	 | ”isNull (” <data_point_address> ”)”

	complex relationship
(complex value assertion)

	<value_assertion-complex> ::= <complex_expression>
<complex_expression> ::=
 <complex_expression><complex_expression_oper>
 <complex_expression>
	 | ”not (” <complex_expression> ”)”
	 | “true” | “false”
	 | <value_assertion-simple>
	 | <existance_assertion>
<complex_expression_oper> ::= ”and” | ”or”

	conditional relationship

	<conditional assertion> ::= ”if (” <complex_expression> ”) then (” <complex_expression> ”)”

	data point address

	
taxonomy_alias;concept_ID;set_of_dimensions;period_type
where
· taxonomy_alias – an optional alias of a taxonomy namespace, e.g. C-COREP, F-FINREP, etc;
an empty field is used for the current taxonomy
· concept_ID – the ID of the concept defined in the taxonomy, e.g. p_ca_SolvencyRatio; it might be replaced by ‘*’ in the ‘over-dimensional-mode’ addressing variant for each listed concept
· set_of_dimensions – a set of dimension values (if applicable), e.g. d_Counterpts_ByCounterpartiesDimension:d_Counterpts_Retail;
a set might be replaced by ‘*’ in the dimensional addressing variant
· period_type – an attribute derived from the taxonomy which covers period aspect using one letter shortcuts: S-start, E-end,D-duration and F-forever. The ‘S’ and the ‘E’ refer to instance periods for the beginning and the end of abstractly defined period for XBRL instance. Duration means interval from start to end values. Forever do not have to be additionally parameterized. If start, end or duration period types are used appropriate formulas requires parameters to represent start and end date
The concept_ID and the set_of_dimensions are defined by XBRL ID, however other ID’s can also be used. In the following examples, next to XBRL ID’s, there are also examples with Polish technical labels. Another option is a qname of a concept. This option ensures consistency with any taxonomy.

Examples

 Example A simple non-dimensional address
	
	
	
	
	C for COREP

	
	
	
	
	XBRL ID

	
	
	
	
	no dimensions

	
	
	
	
	end value of instant concepts

	C;
	p_ca_SolvencyRatio;
	;
	E
	

Example An address with a dimension value
	
	
	
	
	F for FINREP

	
	
	
	
	XBRL ID

	
	
	
	
	dimension

	
	
	
	
	end value of instant concepts

	F;
	ifrs_gp_AvailableForSaleFinancialAssetsLoanAndAdvances;
	d_Counterpts_ByCounterpartiesDimension: d_Counterpts_Retail;
	E
	

Simple addressing
Simple addressing doesn’t require any special syntax. It is just an arithmetic expression with fields (also known as ‘data-points’) as arguments.

Example. Simple value assertion – simple addressing
"C;p‑mi_MultiplicationFactorXAveragePrevious60workingDaysVaR;d‑mr_MRiskIMDimension:d-mr_MRiskIMTotalPosition;E"
= "C;p-mi_MultiplicationFactorXAveragePrevious60workingDaysVaR; d‑mr_MRiskIMDimension:d-mr_MRiskIMTradedDebtInstruments;E"
+ "C;p‑mi_MultiplicationFactorXAveragePrevious60workingDaysVaR; d‑mr_MRiskIMDimension:d-mr_MRiskIMEquities;E" + …

A more complex addressing scheme requires some syntactical glue. A ‘let’ clause is used for defining a filter over dimensions and an ‘in’ clause for an expression.
Example Simple value assertion - ‘Over-dimensional-mode’ addressing
let(dimension = "d-cr_ CreditRiskDimension: *,*")
in("C;p-cm-ca_CreditRiskCapitalRequirements;*;*" = "C;p‑cm‑cr_RiskWeightedExposureAmount;*;*" * 0.08)
Dimensional addressing
Another complex addressing scheme – dimensional addressing – uses the same syntax as ‘over-dimensional-mode’ addressing. The only difference is that the ‘let’ clause contains a measure filter.
Example Simple value assertion – dimensional addressing
let (measure = { 'p-cm-cr_RiskWeightedExposureAmounts', 'p‑cm‑cr_CreditRiskCapitalRequirements' })
in ("C;*;d-ec_ExposureClassDimension:d-ec_IRBECRetail,*;*" =
"C;*;d-ec_ExposureClassDimension:d-ec_IRBECRetailOfWhichSME,*;*" +
"C;*;d-ec_ExposureClassDimension:d-ec_IRBECOtherRetail,*;*" +
"C;*;d‑ec_ExposureClassDimension:d‑ec_IRBECQualifyingRevolving,*;*" +
"C;*;d-ec_ExposureClassDimension:d-ec_IRBECSecuredByRealEstate,*;*")

The measure filter assigns a list of concepts to which a calculation will be applied.

	1

